

LA CURA DELLE COMORBILITÀ DEL FEGATO: EPATITI E STEATOSI EPATICA

AIDS E DINTORNI - 8^A EDIZIONE INFEZIONE DA HIV/AIDS E SALUTE DALLA SINDROME DI LAZZARO ALLA SECOND LIFE 26 novembre 2022 h. 9.00-13.00

> AULA MAGNA ISTITUTO ROSMINI VIA ANTONIO ROSMINI 4/A, TORINO

Ana Lleo, MD, PhD

Department of Biomedical Sciences, Humanitas University

Division of Internal Medicine and Hepatology, Department of Gastroenterology Humanitas Research Hospital, Rozzano, Italy

Disclosures

Speaker: Gilead, Abbvie, MSD, Intercept Pharma, AlfaSigma, GSK, Incyte Consultant: Intercept Pharma, AlfaSigma, Takeda, AstraZeneca, Albireo

Weber R. 2006 Marcus JL 2020

Co-infection with HIV significantly modifies the natural history of HBV infection

In patients with HBV infection, HIV coinfection is associated with:

- $\checkmark\,$ Higher chronicity rate of acute hepatitis B
- Higher levels of HBV replication, even in the presence of HDV super-infection related to HIV-induced CD4 depletion
- ✓ lower rate of spontaneous loss of HBeAg and/or HBsAg and seroconversion to anti-HBe and anti-HBs

Puoti, M. et al. J. Hepatol. 2006

Co-infection with HIV significantly modifies the natural history of HCV infection

HCV-infection duration (years)

Benhamou, Y. et al. Hepatology 1999 Mohsen, Gut 2003

STEATOEPATITE NON ALCOLICA

What is Metabolic Syndrome?

Component	Clinical Cutoff Values
Waist Circumference	≥102 cm in men ≥88 cm in women
Triglycerides	$\geq 150 \text{ mg/dL}$
HDL Cholesterol	<40 mg/dL in men <50 mg/dL in women
Blood Pressure (BP)	≥130 mmHg Systolic BP or ≥85 mmHg Diastolic BP
Fasting Glucose	$\geq 100 \text{ mg/dL}$
Diagnosis	Any 3 of the 5 features above

25% of the world population has fatty liver

Modifié de Younossi et al. Hepatology 2016;64:73

Fatty Liver in different populations

Francque et al. J HEP Report 2021

- The prevalence of NAFLD in patients who are HIV mono-infected ranges from 30% to 60%
- NAFLD in HIV-infected patients occurs at a significantly lower BMI than those without HIV
- HIV-associated NAFLD is not only associated with a high prevalence of fibrosis but also rapid fibrosis progression

Yen DW, Curr Opin HIV AIDS 2022 Lemoine, Curr. Opin. Infect. Dis. 2012

Natural history of NAFLD

J Gregory ©2016 Mount Sinai Health System

Causes of death of NAFLD patients

Outcome	Number
Death or OLT	<i>n</i> = 193
Cardiovascular disease	74 (38.3%)
Non-liver cancer	36 (18.7%)
Cirrhosis complications	15 (7.8%)
HCC	2 (1%)
Liver transplantation	1 (0.5%)
Infections	15 (7.8%)
Others	35 (18.1%)

Angulo et al. Gastro 2015

Metabolic comorbidities and the risk of HCC

¹Obesity, dyslipidemia, hypertension and type 2 diabetes

Diagnostic modalities for NAFLD, NASH and fibrosis

- Invasive Modalities:
 - Histology (liver biopsy is the imperfect gold standard to diagnose NASH and stage fibrosis)
- Non-invasive Modalities:
 - Non-invasive modalities for NASH are not very fruitful.
 - Better opportunities to find non-invasive tests for fibrosis
 - International efforts to find NITs: LITMUS and NIMBLE

Clinical/lab tests

- NAFLD fibrosis score
- FIB-4 index
- AST:ALT ratio
- AST:platelet ratio index
- Hepascore®
- FibroTest®
- FibroMeter®
- Fatty liver index
- Index of NASH

Imaging

- Ultrasound
- Computer tomography
- Magnetic resonance imaging
- Magnetic resonance spectroscopy
- Transient elastography
- Acoustic radiation force impulse
- Magnetic resonance elastography

Biomarkers

- Hyaluronic acid
- Fucosylated haptoglobin (Fuc-Hpt)
- Macroglobulin-2 binding protein (Mac-2bp)
- Fuc-Hpt + Mac-2bp
- ELF score
- FIBROSpect®
- PRO C3

Commonly used noninvasive tests for advanced fibrosis in NAFLD

FIB-4 \rightarrow AST, ALT, Age, Platelet count

NFS \rightarrow AST/ALT, IFG/T2DM, age, BMI, platelet count, albumin

Vibration-controlled transient elastography (Fibroscan[®])

Fibrosis-4 (FIB-4) Calculator

🔀 Share

The Fibrosis-4 score helps to estimate the amount of scarring in the liver. Enter the required values to calculate the FIB-4 value. It will appear in the oval on the far right (highlighted in yellow).

Interpretation:

Using a lower cutoff value of 1.45, a FIB-4 score <1.45 had a negative predictive value of 90% for advanced fibrosis (Ishak fibrosis score 4-6 which includes early bridging fibrosis to cirrhosis). In contrast, a FIB-4 >3.25 would have a 97% specificity and a positive predictive value of 65% for advanced fibrosis. In the patient cohort in which this formula was first validated, at least 70% patients had values <1.45 or >3.25. Authors argued that these individuals could potentially have avoided liver biopsy with an overall accuracy of 86%.

Approach to noninvasive evaluation of NAFLD

Castera et al., Gastroenterology 2019

Risk of developing cirrhosis or HCC corresponded to a subsequent increase or decline in FIB-4 over 3 years

Cholankeril G, J Hepatol 2022

Lifestyles and Fatty Liver

Weight

Sport

Diet

Beverages

Screens

Sleep

Weight loss

Vilar-Gomez et al, *Gastroenterology*, 2015 Romero-Gomez et al, *J Hep*, 2017

Physical activity and Liver mortality

Mediterranean Diet

Sugar Content in sodas

Courtoisie de Prof. M. Abdelmalek

Bariatric surgery

Drug development in NASH

Lifestyles or drug ?

	Lifestyles	Drug therapy
Availability	Yes	Soon?
Cost	Cheap	Not cheap!
Side effects	Little	Likely
Acceptance	Poor	Good
Efficacy	Good	To be proven

Time to develop ALD = to amount of alcohol consumed Men : 60-80 gm/day for 10 years Women : 20-40 gm/day for 10 years

COINFEZIONE HCV

End-stage liver disease (ESLD) incidence rates and 95% confidence intervals by viral hepatitis coinfection status and antiretroviral therapy (ART) era, North American AIDS Cohort Collaboration on Research and Design, January 1996–December 2010. From Klein et al *Clin Infect Dis* 2016.

Updated HCV Epidemiology in 2020

Viremic infections have declined since 2015, due to new/improved data, as well as mortality and cure

Updated estimates for Egypt, Brazil and Nigeria, as well as a new estimate for Democratic Republic of the Congo have contributed to a lower baseline prevalence in 2015

Updated HCV Epidemiology in 2020

HCV Screening: Different Approaches Lead to Different Results

EASL HCV Treatment Algorithm for TN/TE Patients Without Cirrhosis or With Compensated Cirrhosis

Treatment recommendations for HCV-mono-infected or HCV/HIV coinfected adult (aged \geq 18 years) and adolescent (aged 12–17 years) patients with chronic HCV without cirrhosis or with CC* including TN and TE⁺

		Treatment-naïve		Treatment experienced	
		G/P	SOF/VEL	G/P	SOF/VEL
GT 1a, 1b, 2,	Without cirrhosis	8 weeks	12 weeks	8 weeks	12 weeks
4, 5, and 6	With compensated cirrhotic	8 weeks	12 weeks	12 weeks	12 weeks
	Without cirrhosis	8 weeks	12 weeks	12 weeks	12 weeks
GT 3	With compensated cirrhotic	8–12 weeks‡	12 weeks with weight-based RBV [§]	16 weeks	12 weeks with weight-based RBV [§]

*Child-Pugh A; [†]TE to pegIFN + RBV, pegIFN-α + RBV + SOF or SOF + RBV; [‡]In TN patients infected with GT3 with CC, treatment with G/P can be shortened to 8 weeks, but more data are needed to consolidate this recommendation; [§] If resistance testing is formed, only patients with the NS5A Y93H RAS at baseline should be treated with SOF/VEL + RBV or with SOF/VEL/VOX, whereas patients without the Y93H RAS should be treated with SOF/VEL alone. CC, compensated cirrhosis; EASL, European Association for the Study of the Liver; G/P, glecaprevir/pibrentasvir; GT, genotype; pegIFN, pegylated interferon; RAS, resistance-associated substitution; RBV, ribavirin; SOF, sofosbuvir; TE, treatment experienced; TN, treatment-naïve; VEL, velpatasvir.

1. EASL. J Hepatol 2020 Nov;73(5):1170-1218. doi: 10.1016/j.jhep.2020.08.018. Epub 2020 Sep 15. 2. Maviret (GLE/PIB) US Prescribing Information.

Disease Severity Impacts the PK of PIs

Fig. 2 Overview of the pathophysiological changes in patients with liver cirrhosis that influence drug metabolism and therefore the pharmacokinetics of drugs. *CYP* cytochrome P450, *UGT* uridine diphosphate-glucuronosyltransferase, \downarrow indicates decrease, \uparrow indicates increase

Drug Saf (2016) 39:589-611

ORIGINAL ARTICLE

Real-world effectiveness and safety of direct-acting antivirals in

patients with cir<u>rhosis and history of henatic decompensation</u>.

Epi-Ter2 Study

Aleksandra Berkan-Kawir Zdunek, Krzysztof Tomas Iwona Buczyńska, Monika RESEARCH LETTER Jakub Klapaczyński, Włod Białkowska-Warzecha, Ol ... See fewer authors \land

Aleksander Garlicki, Mare Sofosbuvir/velpatasvir/voxilaprevir for hepatitis C virus retreatment in decompensated cirrhosis

First published: 02 March Sonalie Patel 🔀, Michelle T. Martin, Steven L. Flamm

First published: 30 September 2021 | https://doi.org/10.1111/liv.15075

RESEARCH LETTER

TABLE 1 Patient characteristics

	Patient	1	2	3	4	5	6
	Age (years)	82	63	57	56	62	52
	Gender	Male	Male	Female	Male	Female	Male
	BMI (kg/m ²)	30.6	22.5	29.2	37.6	29.3	34.3
	Genotype/subtype	1b	3a	1a	1a	1a	3a
	CTP Class (points)	B (8)	B (8)	B (7)	B (8)	B (9)	C (10)
	Week 4						
	HCV RNA (IU/ml)	Not detected	Not detected	126	Not detected	Not detected	Not detected
	CTP CLass (points)	B (8)	B (7)	A (6)	B (7)	B (8)	B (7)
	MELD-Na	15	14	11	10	15	16
	Week 8						
	HCV RNA (IU/ml)	Not detected					
	CTP class (points)	B (8)	B (7)	A (6)	B (7)	B (7)	B (7)
	MELD-Na	16	17	11	13	15	13
Week 12 (end of treatment)							
	HCV RNA (IU/ml)	Not detected					
	CTP class (points)	B (8)	B (7)	A (6)	B (7)	B (7)	B (7)
	MELD-Na	17	13	12	12	14	17
	HCV RNA (IU/ml)	Not detected	Not detected	Not detected	886,538	Not detected	Not detected
	CTP class (points)	B (7)	B (7)	A (5)	B (7)	B (7)	B (9)
-	MELD-Na	12	11	9	11	14	14

Increased Risk of HCC Persists up to 10 Years After Virus Eradication in Patients with Advanced HCV

> 29,033 VA patients with an SVR to DAA and 19,102 with an SVR to IFN

> During 5.4 yr follow-up, 1509 incident HCCs were identified

Conclusions: Patients with cirrhosis before an SVR to treatment for HCV infection continue to have a high risk for HCC (>2%/year) for many years, even if their FIB-4 score decreases, and should continue surveillance. Patients without cirrhosis but with FIB-4 scores ≥3.25 have a high enough risk to merit HCC surveillance, especially if FIB-4 remains ≥3.25 post-SVR.

Years After SVR

Who Should be Followed After an SVR?

 Patients with no to moderate fibrosis (METAVIR score F0-F2), with SVR and no ongoing risk behaviour should be discharged, provided that they have no other comorbidities (A1).

 Patients with advanced fibrosis (F3) or cirrhosis (F4) with SVR should undergo surveillance for HCC every 6 months by means of ultrasound (A1).

SVR Does Not Improve Long Term Glycemic Control in HCV Patients

Lia Ji et al, Liver International 2019

Diabetes and Obesity Impact on Repeated Elastography Measurements Following an SVR

TABLE 3. INDEPENDENT PREDICTORS OF LSM CHANGES AT 24-WEEK FOLLOW-UP AFTER THERAPY IN 748 PATIENTS WITH COUPLED EVALUATIONS

Term	Estimate	SEM	P Value
Sex, F	+0.008	0.016	0.63
Age, 10 years	+0.010	0.012	0.44
SVR, yes	-0.191	0.088	0.029
BMI, kg/m ²	+0.002	0.004	0.57
Diabetes, yes	+0.047	0.023	0.039

High Risk of HCC in NAFLD Without Cirrhosis

Who Should We Follow-up Post SVR?

1 elevated ALT levels: ≥ 35 U/L for females, ≥50 U/L for males 2. elevated GGT levels : 40 U/L for females, ≥ 60 U/L for males 3. Non alcoholic steato hepatitis, obesity, alcohol consumption and diabetes

Colapietro F, Aghemo A, Liver International 2020

Who Should We Follow-up Post SVR?

SVR: Sustained virological response; DAA: direct-acting antivirals; CPT: Child-Pugh-Turcotte; HCC: hepatocellular carcinoma; PSE: porto-systemic encephalopathy

Who Should We Follow-up Post SVR?

Management of Portal Hypertension Following Viral Suppression

- 3.7 In the absence of co-factors, patients with HCV-induced cACLD who achieve SVR and show consistent post-treatment improvements with LSM values of <12kPa and PLT >150x10⁹/L can be discharged from portal hypertension surveillance (LSM and endoscopy), as they do not have CSPH and are at negligible risk of hepatic decompensation. In these patients, hepatocellular carcinoma surveillance should continue until further data is available. (B.1) (New)
- 3.8 The Baveno VI criteria (i.e., LSM <20kPa and PLT >150x10⁹/L) can be used to rule-out highrisk varices in patients with HCV- and HBV-induced cACLD who achieved SVR and viral

suppression, respectively. (B.1) (New)

(0) 5
(0) 0
(0) 2
(0) 0
2

 Number of risk (events)

 Unfavorable Baveno VI
 164
 (5)
 135
 (5)
 112
 (1)
 98
 (0)
 84
 (0)
 72
 (1)
 53
 (0)
 32
 (0)
 16
 (1)
 2

 Favorable Baveno VI
 64
 (0)
 63
 (0)
 59
 (0)
 58
 (0)
 55
 (0)
 43
 (0)
 32
 (0)
 22
 (0)
 3

Thabut D et al, Gastroenterology 2019

Take home messages

- ✓ Fibrogenic pathways from HIV include direct effects on liver cells, immune activation from bacterial translocation, and altered immunity from T-cell exhaustion and death.
- ✓ Although HCV co-infection has declined, HBV and HDV are still main contributors to HIV related liver disease, and HEV is particularly common in Europe.
- ✓ NASH is highly prevalent in people with HIV and is associated with rapid fibrosis progression, with visceral fat related to lipodystrophy as a clinical predictor.
- ✓ Despite lowered risk of fibrosis progression with effective antiretroviral therapy, mechanisms of fibrogenesis are not completely reduced, and further studies in the possible contribution of contemporary antiretroviral therapy to fatty liver disease are needed.
- Emerging therapies include CCR5 inhibitors for modulation of hepatic fibrosis, tesamorelin for HIV associated nonalcoholic fatty liver disease, and bulevirtide and lonafarnib as potential cures for hepatitis D.